Statistical Analysis of Genetic Algorithms in Discovering Technical Trading Strategies

نویسندگان

  • Shu-Heng Chen
  • Chueh-Yung Tsao
چکیده

In this study, the performance of ordinal GA-based trading strategies is evaluated under six classes of time series model, namely, the linear ARMA model, the bilinear model, the ARCH model, the GARCH model, the threshold model and the chaotic model. The performance criteria employed are the winning probability, accumulated returns, Sharpe ratio and luck coefficient. Asymptotic test statistics for these criteria are derived. The hypothesis as to the superiority of GA over a benchmark, say, buy-and-hold, can then be tested using Monte Carlo simulation. From this rigorouslyestablished evaluation process, we find that simple genetic algorithms can work very well in linear stochastic environments, and that they also work very well in nonlinear deterministic (chaotic) environments. However, they may perform much worse in pure nonlinear stochastic cases. These results shed light on the superior performance of GA when it is applied to the two tick-by-tick time series of foreign exchange rates: EUR/USD and USD/JPY. Applications of Artificial Intelligence in Finance and Economics Advances in Econometrics, Volume 19, 1–43 Copyright © 2004 by Elsevier Ltd. All rights of reproduction in any form reserved ISSN: 0731-9053/doi:10.1016/S0731-9053(04)19001-4

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyzing the Effectiveness of Candlestick Technical Trading Strategies in Foreign Exchange Market

Candlestick charts are a type of financial chart for tracking the movement of securities. Some of the earliest technical trading analysis was used to track prices of rice in the 18th century. Some investors find them more visually appealing than the standard bar charts and the price actions easier to interpret. In technical analysis, a candlestick pattern is a movement in prices shown graphical...

متن کامل

Performance Evaluation of the Technical Analysis Indicators in Comparison whit the Buy and Hold Strategy in Tehran Stock Exchange Indices

Technical analysis is one of the financial market analysis tools. Technical analysis is a method of anticipating prices and markets through studying historical market data. Based on the factors studied in this type of analysis, indicators are designed and presented to facilitate decision-making on buy and sell stress and then buy and sell action in financial markets. This research evaluates per...

متن کامل

News and Trading Rules

AI has long been applied to the problem of predicting financial markets. While AI researchers see financial forecasting as a fascinating challenge, predicting markets has powerful implications for financial economics – in particular the study of market efficiency. Recently economists have turned to AI for tools, using genetic algorithms to build trading strategies, and exploring the returns tho...

متن کامل

Developing Actionable Trading Strategies

Actionable trading strategies for trading agents determine the potential of the simulated models in real-life markets. The development of actionable strategies is a non-trivial task, which needs to consider real-life constraints and organizational factors in the market. In this paper, we first analyze such constraints on developing actionable trading strategies. Further we propose an actionable...

متن کامل

Discovering Financial Technical Trading Rules Using Genetic Programming with Lambda Abstraction

Keywords: We applied genetic programming with a lambda abstraction module mechanism to learn technical trading rules based on S&P 500 index from 1982 to 2002. The results show strong evidence of excess returns over buy-and-hold after transaction cost. The discovered trading rules can be interpreted easily; each rule uses a combination of one to four widely used technical indicators to make trad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004